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Abstract. Recent research has demonstrated the vulnerability of cer-
tain smart card architectures to differential power analysis when multi-
plier operations are insufficiently shielded from external monitoring. Here
multipliers are investigated in more detail in order to provide the found-
ation for understanding potential weaknesses and enabling the subse-
quent successful repair of those systems. A model is built which accu-
rately predicts power use as a function of the Hamming weights of inputs
without the combinatorial explosion of exhaustive simulation. This con-
firms that power use is indeed data dependent, and bears a very close
relationship to the Hamming weights of the inputs.
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1 Introduction

Security is an increasingly important issue these days, even for computer arith-
metic. Typical RSA [13] hardware performs long integer modular multiplications
AxB mod M using a modification of the standard primary school method for
decimal multiplication where modular reductions are interleaved with the addi-
tions of digit multiples of the multiplicand. Normally this is done using a k-bit
multiplier to compute digit products a; xb; and g; xm;. Because switching gates
in a circuit requires more power than keeping them in their current states, the
amount of power consumed during a multiplication is data dependent. With suf-
ficiently sensitive monitoring equipment, such variations can be observed and
perhaps used to deduce properties of the data being processed. This is called
power analysis. It has serious economic consequences if it can be applied to at-
tack an electronic purse on a smart card, a signature key on a credit card or
rights keys on pay-per-view cards.

For such applications, the required implementations of public-key crypto-
graphy need to be exceptionally strong. Moreover, the possibilities for including
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physical tamper resistance, such as large capacitors to mask current fluctua-
tions, are limited. Recently, work of Kocher [9] has drawn the public’s attention
to simple power analysis (SPA) and differential power analysis (DPA) as means
of recovering secret keys from embedded cryptographic systems such as smart
cards. Much was already known in this regard by government security agencies
[1] and it forms a natural part of the on-going Tempest project [7] which con-
centrated on electro-magnetic radiation (EMR) from computing equipment and
cables [4]. Other attacks of interest to readers, but not discussed here, include
looking at timing variations arising usually from software branching [8], [14],
[16]. A number of defences against such side channel leakage are mentioned by
Anderson [1], including bus encryption [2], which cures perhaps the most major
source of measurable, data dependent, power variation. Random transformations
of inputs, randomising algorithms, random noise generators and concurrent cal-
culations on another processor are some of the methods used to blind the cal-
culations sufficiently for recovery of the secret key to become impossible during
a deliberately limited life span.

Although Kocher’s work concentrates on variation in the total power con-
sumption of a smart card, Gandolfi et al. [6] have shown that it is possible to
measure EMR at specific points in a chip. Since multipliers occupy a substantial
part of most CPUs and cryptographic co-processors, they now become one of the
major sources of possible data leakage which may need protection. On a chip with
no security measures and little other than a multiplier, Sommer [10] observed
a correlation between power traces and values by looping through a particular
cycle of values. Here we investigate multipliers to see what power variations there
are. The investigation confirms that attacks such as that presented in [15] should
indeed be possible at least for small multipliers. Complexity issues can be used
to show that larger multipliers are less vulnerable to such attacks, but, of course,
new attacks may make the more usual 16- or 32- bit multipliers unsafe in the
future.

Contrary to the widely held belief that longer keys mean stronger encryption,
in the context of embedded cryptosystems where an attacker can measure side
channel leakage directly, it often appears to be the case that longer keys lead
to more leaked data per secret bit (in RSA there is on average a long integer
square and half a multiplication for each exponent bit) and hence to a weaker
cryptosystem [15]. One solution is to use a larger multiplier. Results here will
enable the advantages of larger multipliers to be evaluated quantitatively.

The investigation is based on simulations which have computed gate switch-
ing activity in an accurate software morel of a multiplier. No cards were actually
tested; the work of others such as [9] and [10] confirms the connection between
power use and gate switching. This data rather than that from cards may be
closer to what might be successfully measured non-invasively by EMR, probes
without unreasonable expense in the near future.

The main problem with exhaustive simulations is the combinatorial explo-
sion: O(2*k?) for a k-bit multiplier. So, the simulations can be performed com-
pletely only for small multipliers. For the larger cases which are likely to be met
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in practice, less accurate random sampling has to be performed. This prompts
the need for more efficient models. Therefore, for cases when Hamming weights
are of interest, a model is constructed which predicts power use in only O(k%)
time. This model is tailored to the precise construction of the target multiplier
to give very accurate results.

The simulations enable some theoretical predictions to be made about gate
switching activity in a multiplier. Their precision is verified by the accuracy to
which our model predicts gate switching. In particular, it is possible to assume
independence between various data bits in the multiplier even although they are
highly dependent.

Quite apart from applications to the assessment of smartcard security, the
following article may be useful as a starting point for taking a more theoretical
approach to estimating the maximum (and minimum) power used by a multiplier
in a single clock cycle, whether pipelined or not. As multipliers grow in size it
becomes more and more difficult to determine the maximum gate switching
activity and hence the maximum power needed during each clock cycle. As well
as the critical path length, this influences the minimum clock cycle time which is
possible without introducing errors due to some gates not having changed state
before the end of the clock cycle.

2 Background

Most cryptographic processors make use of a single k-bit multiplier, where typi-
cally k£ = 16 in the past and k¥ = 32 is becoming the norm. The long integers used
in public-key cryptography are then represented using k-bit digits. Suppose M is
the modulus for the crypto-system which an attacker wishes to break. Its digits
will be denoted m;. The range of the index ¢ is not important, but typically an
attacker needs at least a dozen or so, say O(2%), digits in the modulus for his
methods to succeed, and this is roughly the minimum number which occur in
practice.

The attacker’s aim is to recover the factorisation of the modulus M or equiv-
alent information. This should remain secret in an RSA cryptosystem. RSA
uses modular exponentiation to encrypt, decrypt, sign and verify data [13]. The
main cycle of the component modular multiplications R + (AxB + C') mod M
repeatedly performs the following task:

R ¢+ rxR+a;xB;
q < R div M;
R + R-—qxM,;

(or a similar more efficient variation, such as is given by Montgomery [12]) where
R is used for holding the partial product, a; is a digit of A and ¢ is the digit
multiple of M which must be subtracted to keep R within any required bounds.
The first and last assignments break down into a number of sequential multiply-
accumulate operations

ri +rxc — rxr;+axb;+c (1)
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ri+rxe — r;—gxXm;+c (2)

on digits, where c is a carry digit and r = 2*.

The hardware for these multiply-accumulate operations leaks data which an
attacker can extract by observing variations in electrical current and electro-
magnetic radiation. The main question of interest here is whether or not it is
possible for him to recover enough data to reconstruct either the secret exponent
or the secret factorisation of the modulus. Most current attacks depend on the
observation that both (1) and (2) make repeated re-use of the same data. In
the case of (1), with the standard square-and-multiply or m-ary exponentiation
methods, the multiplicand B is always a small power of the initial text. In the
case of (2), the modulus M re-appears every time.

The background to the data dependent power variations of interest in the
multiplier is the observation that when a gate output in the combinational logic
is switched from low to high or high to low it momentarily uses more power
than when remaining in a stable state. The main difficulty is that the power
depends not just on the input data but also on the initial state of the multiplier.
Some technique, such as averaging, is needed to remove such dependencies on the
initial state and other irrelevant inputs. The repeated re-use of data in (1) and (2)
provides just the opportunity for this. The main problem faced by implementors
is the removal of the handles by which an attacker is able to isolate useful subsets
of observations over which averaging proves productive: the handle used in [15]
was based on the Hamming weight of digits.

With a process for which some data is fixed, it is possible that the average
number of switched gates, and hence the mean power used, over a chosen set
of clock cycles is characteristic of the fixed data. Then many observations of
variations in the power consumption by the process may enable this average
to be determined with sufficient accuracy for the value of the fixed data to be
deduced correctly. Such averaging may take place over a set of consecutive cycles,
over a set of non-adjacent cycles during a single exponentiation, or even over a
set of related cycles observed during different exponentiations. Our interest here,
then, is in averaged data from the multiplier and what might be deduced from
that about its arguments or initial state. For convenience, we will assume that
the powers consumed by switching AND, OR and XOR gates are all the same and
identical whichever way they are switched, although in practice they will all be
slightly different. Thus, to obtain an overall picture, it will suffice to count gates
which are switched without any weighting for different power use.

3 Multiplier Simulation

A software simulation of a k-bit multiplier was built with variable k in order
to verify claims by previous authors that gate switching activity was related to
the Hamming weights of the inputs, i.e. to the number of input bits which are
set to 1. The simulated circuit was constructed from a number of AND gates,
3-bit to 2-bit full adders (Figure 1) and 2-bit half adders in the standard way
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Fig.1. A 3-bit Counter or Full Adder.

described below in §6. The number of gates switched between the registers was
recorded, but no term was included for switching within the registers, or for the
multiplexing of input bits which is required to feed the initial AND gates. As
we will observe later, such switching activity simply increases the strength of
our conclusions. Furthermore, the accumulation of the carry digit ¢ was ignored:
it makes little difference to the results except that further averaging would be
necessary to eliminate the variation caused by this extra parameter.

Different designs were tried corresponding to the different groups of three
bits which can be chosen for each full adder. Whilst some differences were noted,
these were not substantial in terms of their effect on the simulation results. So
similar results would probably hold whatever the construction of the multiplier.
However, that said, our initial multiplier model was slightly simplified to make
its realisation in software easier: in particular, more gates than are necessary
were used. Its behaviour did differ from reality in several significant ways and so
had to be re-built with greater accuracy. The final multiplier model used in the
simulations accurately matched one that might be realised in hardware. Hence
some care is necessary in building the simulation.

Multipliers are very standard and one can assume an attacker knows the
detail of the one used well enough to adapt the results appropriately to his
particular case. However, it actually suffices for the attacker to treat the target
multiplier as a black box and measure power variations for chosen inputs in order
to calibrate his processing of data from the target smartcard.

In the ideal simulation, the gates in the multiplier would be initialised by
executing an initial product, say c¢xd. For each choice of ¢ and d, the product
axb would then be performed and the number of gate switches counted. For
each a, the average would be computed as b, ¢ and d varied over all values and
this used to characterise a. In practice, this is only possible for small multipliers,
and was done for all the results here with £ < 8. For larger multipliers some
simplifications need to be made. In particular, only a subset of random values ¢
and d were chosen, and, when necessary, only a random set of values for b were
used to derive data supposedly characteristic of a.
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axb a 0 1 2 4 5 3 6 7
b |Averages| 6.31 7.31 7.88 8.30 9.80 9.87 10.41 12.27
0 6.31 | 631 6.31 631 631 6.31 6.31 631 6.31
1 744 | 6.31 681 7.06 731 7.81 7.56 8.06 8.56
2 7.88 | 6.31 7.06 7.31 7.69 8.44 8.06 8.69 9.44
4 817 | 631 7.06 7.69 791 8.66 8.44 9.28 10.03
5 9.80 | 6.31 7.56 8.44 891 11.78 9.69 11.03 14.69
3 9.88 | 6.31 7.56 8.06 8.69 9.94 10.81 12.97 14.72
6 10.39 | 6.31 7.81 8.69 9.28 10.78 13.16 12.00 15.13
7 12.27 | 6.31 8.31 9.44 10.28 14.69 14.91 14.94 19.31

Fig. 2. Average Gate Switching for axb in a 3-bit multiplier (k = 3), sorted according
to overall switching activity in each argument.

First, for small £ (k < 8), the average number of gate changes from high to
low or low to high were counted during the computation of each of the 2%* digit
products axb after each of the 22 possible initialisations of the multiplier by a
preceding multiplication. This was repeated for larger &, but only using random
initialisation of the multiplier. These gate switch averages were themselves aver-
aged for a given a as the first argument and random second argument, and for a
given second argument b with any random first argument. The first arguments
a (the multipliers) and the second arguments b (the multiplicands) were then
ordered according to these averages and used to create tables (Fig. 2) and graphs
(Fig. 3) for comparison purposes.

Interestingly, these two orders are very slightly different (see Fig. 2 and the
Appendix), showing that the multiplier was not quite symmetrical regarding the
two inputs. In a typical unsophisticated multiplier, the inputs a and b are used
to form k? bit products given by ANDing one bit from the multiplicand b with
one bit from the multiplier a. As in the primary school method for multiplying
decimal numbers, these are treated as k binary numbers by keeping together the
bits formed from the product of b by a bit of a. They are then added together.
The 3-bit counters are arranged in rows in the multiplier so that sets of 3 such
binary numbers (always linear combinations of the multiplicand) are added by
one row of counters, reducing them to two binary numbers. The construction
processes multiples of the multiplicand b uniformly whilst unavoidably mixing
up some of multiples of the multiplier a. As a result of the inevitable lack of
symmetry between the arguments of the multiplier, we distinguish between the
multiplicand, always the second argument (b here), and the multiplier, which
is always the first argument (a here). These effects are less pronounced as k
is increased because a smaller proportion of input bits are subject to the re-
arrangements needed to obtain three inputs for each full adder. Unfortunately,
space limitations make a larger illustration impossible here.

It is the order of the digits according to the number of gates switched which

is of interest here. We write ap <y4. a1 when the average gate count for digit
ap is less than that for a; in a particular, specified situation. Not only was it
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verified that the gate count is indeed closely related to the Hamming weights of
the arguments a and b, but more detailed patterns emerged for the ordering of
individual digits according to these gate switching counts.

— The Hamming Weight Principle: Let HW(a) denote the Hamming
weight of a digit a, i.e. the sum of its bits. Then HW(ap) < HW(a;) always
implies ag <gc a1.

This held without exception for either argument and for all values of £ that
were investigated, whether by exhaustive simulation as in the cases of k£ < 8,
or by random approximation as described above. For small k there is a clear
jump in the average number of gates switched when the Hamming weight of an
argument is increased.

More detailed ordering of digits with equal Hamming weight followed several
rules-of-thumb for the majority of cases. However, the requirement to group
bits in sets of three for the full adders means that the rules were not always
followed. For example, the next two “guidelines” held for around 75% and 85%
respectively of all cases k < 8:

— I. Suppose ap and a1 are odd digits with Hw(ag) = HW(a1) and ag < a;.
Then usually 2%ag >4. 27a; for 4,5 > 0.

— II. Normally, a <, 2%a for i > 0.

For the current example of k = 3, these imply the additional relations 5 <,
3 <ge 6 and 1 <4 2 <4c 4. They are readily verified to hold for the data in
Figure 2 and, with the Hamming Weight Principle, they provide a total ordering
of all the digits when & = 3. Additional data for small k are included in the
Appendix, but a comparison with the next case is worthwhile:

— For k =4, the order is 0, 1, 2, 4,
multiplier argument and 0, 1, 2
the multiplicand argument.

8,3,9,5,10, 6,12, 11, 7, 13, 14, 15 for the
.4,8,9,3,5, 10, 12, 6, 13, 7, 11, 14, 15 for

Here, the order varies slightly between multiplier and multiplicand, but the Ham-
ming Weight rule still holds. The second rule-of-thumb always holds also, but
the first fails in a quarter of cases, namely for the pairs (3,5), (3,9), (3,10), (7,13)
and (11,13) of multipliers and pairs (3,5), (3,10) and (7,11) of multiplicands. A
further principle relates the order of digits as k is increased when the hardware
is constructed in the same way:

— III. If a <g4c b in k-bit arithmetic, then usually a <y b in (k+1)-bit arith-
metic.

Thus, the digit order for £ = 3 is contained within that of £k = 4 with the
exception of the pair (5,3) being reversed. Like the first two, this rule is frequently
violated. Re-ordering of digits is inevitable: the combinatorics of the multiplier
make it difficult to combine rows of 3-bit adders in a consistent manner as k



8 submitted to IEEE Transactions on Computers

varies. Thus, for k¥ = 3, 8 binary numbers must be added together. The first two
rows of full adders reduce the first 6 numbers (which are bit multiples of b) to 4
leaving 2 to be added in later rows. However, for £ = 4 the same process leaves
just 1 initial number to be added in later rows.

In conclusion, it is clear that there are general principles for any multiplier
which determine a broad ordering of the digits which corresponds to the order
given by average gate switching, but the detailed order is fixed only once the
multiplier is known quite precisely.

Number of Gate Switchings

20 Digit 7
Digits

15 Wt 2

10 { Digits
wt. 1
Digit 0

5

0 1 2 4 5 3 6 7

First Argument Digit

Fig. 3. Gate Switching Frequency Graphs for the Second (Multiplicand) Argument of
a 3-Bit Multiplier.

For each second argument digit (the multiplicand) the number of gate changes
can be plotted as a function of the first argument (the multiplier). Figure 3 shows
this for k¥ = 3, with the multiplier digits ordered according to increasing average
gate counts. This case is typical. The grouping according to Hamming weight
is quite clear, and just as pronounced for all the cases which could be fully
computed (i.e. k < 8). However, within each group, the digits have individual
characteristics: this is particularly noticeable here for those of Hamming weight
2. This shows that there are higher order properties than just the average gate
counts which might be exploited from the statistics in order to deduce an un-
known argument in a digit product.
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4 Hamming Weights

The gate count results for the digit products axb can be translated easily into
statistics which relate Hamming weights simply by averaging over all digits with
the same Hamming weight. The table in Figure 4 provides such data for 8-bit
arguments. Figure 5 illustrates these data as a surface in 3-dimensional space.

axb | HW(a) 0 1 2 3 4 5 6 7 8

(b)] Av®®*| 77.30 81.49 88.26 95.88 103.82 111.86 119.87 127.80 135.60
7730 | 77.30 7730 77.30 7730 7730 7730 77.30 77.30 77.30
81.49 | 77.30 7835 79.40 80.45 81.49 82.54 83.59 84.64 85.69
88.24 | 77.30 79.40 81.72 84.47 87.84 91.77 95.54 99.12 102.86
95.90 | 77.30 80.45 84.47 89.78 95.68 101.56 107.76 114.15 120.10
103.84| 77.30 81.49 87.83 95.69 103.59 111.84 120.02 128.21 136.04
111.85| 77.30 82.54 91.77 101.56 111.81 121.97 132.06 141.70 151.61
119.84| 77.30 83.59 95.63 107.69 119.94 132.05 143.64 155.43 167.50
127.75| 77.30 84.64 99.27 113.91 128.15 141.71 155.46 168.97 181.18
135.60 | 77.30 85.69 102.97 119.62 136.04 152.00 167.58 181.14 193.14

o
=

W O ULk WO

Fig. 4. Gate Switching Activity for axb in an 8-bit multiplier, averaged over arguments
with the same Hamming Weights.

Gates
200

1754
150+

1251
100 1

75 ¥

Fig. 5. Surface illustrating Gate Switching Activity in an 8-bit multiplier as a function
of the Hamming Weights Hw(a) and Bw(b) of the inputs.

From these data it is clear that there is a very close relationship between
Hamming weight and average gate switching activity. This relationship is close
to linear in each Hamming weight except for values close to 0. Thus, if one can



10 submitted to IEEE Transactions on Computers

obtain a measure of the average gate switching activity for axb as b varies uni-
formly over all digits, or uniformly over all digits of a known Hamming weight,
then it should be possible to extract the exact Hamming weight of a. Unfor-
tunately for the attacker of an embedded RSA cryptosystem, and fortunately
for the security of such a product, this does not lead easily to a deduction of
the value of a except in the unusual circumstances of extreme Hamming weights.
The variance in average gate counts between individual digits of the same weight
is not high, and for the middle weights there are many alternative choices which
can be made. Because of this, increasing k makes life still harder for the attacker.

log,(1+(2'%-1)%j/16°)

Fig. 6. The function % log, (1+(2¥—1)ij/k*) for 0 <4,j < k = 16.

We will see shortly that gate switching activity depends closely on the differ-
ence in the number of bits which are set to 1 between input and output. Hence
the Hamming weight of a product becomes interesting:

— When averaged over all k-bit values of @ and b with given Hamming weight,
the Hamming weight of axb is close to linear in log{1+HW(a)aw(b)} where
HW is the Hamming weight function.

This is illustrated graphically in Figure 6. An overview of the justification for
it is as follows. The average value for digits of given Hamming weight increases
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with the weight. So the average value of a product increases as the Hamming
weight of its arguments increases. As average Hamming weight increases with
increase in value, the average Hamming weight of this product should increase
also. In detail, the average value for k-bit digits of Hamming weight i is (2¥—1)i/k
(since this is the average for each set of distinct cyclic permutations of a k-tuple
of bits for which i bits are 1). Since the average of the products of numbers
from two sets is the product of the averages of the two sets, the average value
for the product of digits with weights i and j is (2¥—1)%ij/k?. However, the
average Hamming weight of an integer « is approximately £ {log, (e)+ log, (1+)}
(because the integral of this function from z = 0 to z = 2¥—1 is the sum of the
Hamming weights for such integers x, namely 2¥~'%). Thus,

— we expect the average Hamming weight for the product of digits with weights
1 and j to be approximately

5 {1og (0)+ logy (1+ (24 ~1)7i/k)}

Fig. 7. Average Hamming Weights of Products for a 16-bit Multiplier.

This is essentially what the claim says. For the larger classes of digits with a given
Hamming weight, i.e. for the middle range of Hamming weights, it is reasonable



12 submitted to IEEE Transactions on Computers

to assume random effects to be sufficiently numerous to justify acceptance of
this approximation to the average weight of the product. However, for small
and large input Hamming weights discrete effects become more noticeable. The
discrepancies can be seen when accurate weights are computed.

Figure 7 illustrates the true average Hamming weight of the product of two
16-bit numbers of given Hamming weight. It is typical of the general case for k-bit
numbers. There is a reasonable correspondence between it and Figure 6, which
illustrates the approximating assumption above. In Figure 7, most digit values
give rise to products in the sloping plateau region away from small Hamming
weights. The diagram shows that the average Hamming weight of axb normally
increases slowly as the Hamming weight of a or b is increased, and it is normally
just below k. However, when @ or b has a small Hamming weight, there is a sharp
increase in weight of the product as the smaller weight argument increases from
weight 0. Furthermore, when both a and b have weights approaching £ there is
first a little peak with the product weight above k but after that there is a small
depression to below k before the final increase to k.

5 3-bit Counters

The above now makes it possible to use the number of input bits set to 1 to esti-
mate the number of output bits which are set to 1 in the multiplier. This can be
used to calculate the expected number of 3-bit counters which reduce their num-
ber of bits set to 1 from input to output. From that, the approximate number of
data-dependent gate switchings can be computed. Consequently, the Hamming
weights of the inputs do indeed determine the average Hamming weight of the
output in the way expected above and as illustrated in Figures 4 and 5. Unfortu-
nately, this simple overview needs some careful analysis and extra detail before
it reflects reality closely enough to be usable.

First we need to look at 3-bit counters in detail. The probability distribution
of bits supplied to these full adders varies throughout a multiplier, and this affects
the number of gates that are switched. The next theorem describes how a single
counter both experiences a data-dependent amount of gate switching activity and
also affects the probabilities of bits as they pass through. When such counters
are combined in a multiplier, we can see that interesting data-dependent activity
will occur near the inputs, but then the effect of any uneven distribution of input
bits dissipates lower down in the multiplier so that eventually, near the output,
0s and 1s turn up with roughly equal probability.

Theorem 1. In a 3-bit full adder, let § be the difference between the number of
bits set to 1 at input and the number of bits set to 1 at output. Then,
i) 0 is either 0 or 1. If the input bits are independent with probability p of
being 1, then 0 = 0 with probability 3pg®>+q° and 6 = 1 with probability p>+3p3q;
ii) On average, if all inputs are independently and uniformly distributed then
two gates are switched if § =0, and two and a half gates are switched if § = 1;
iii) Suppose the full adder has been initialised with input bits which are inde-
pendent with probability p of being 1. If the next inputs are 1 independently with
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probability p’ then the average number of gates switched when 6 = 0 is

!

p
1+2p'

p(3+2q) + (¢—p)*(59—p)

and the average number of gates switched when § =1 is

!

q

(3+2p+4p)q + 7 oy (3p—9)*(p—q) ;

iv) For the situation described in (iil), the average difference in the number
of gates switched between the cases § =0 and § =1 is: a) at least % for allp < %
with equality for p = %, b) a decreasing function of p for most values, and c)
positive for all p less than approzimately 0.6.

Proof. i) The adder inputs three bits representing three units and outputs the
sum as a 2-bit binary number. The Hamming weight of the input is the value of
the output: the 3-bit adder counts the number of input bits which are set to 1. So
inputs with Hamming weights 0, 1, 2 and 3 yield outputs with Hamming weights
0, 1, 1 and 2 respectively. For the first two, there is no difference in Hamming
weights between input and output, but for the second two there is a difference of
1. The difference in Hamming weights occurs exactly when the output bit from
the OR gate (Figure 1) is set: it performs the combination of two bits.

Let p be the probability of an input 1 and ¢ = 1—p that of 0. Then, for
independent inputs, the probability of a reduction in Hamming weight from
input to output is the probability of the input being 2 or 3, namely p®+3p3q.
This is the probability of an output 1 from line v. The probability of an output
1 from line u is the probability of the input being 1 or 3, namely p*+3pg?.

ii) We will write full adder inputs ijk following the left-to-right order pre-
sented in Figure 1. Interchanging the values of i and j makes no difference to
the switching of any gates or to their outputs. This means we can combine some
cases, namely the pairs of inputs 0lz and 10z for z = 0 and = = 1. The state
of the adder will be represented by the outputs of the five gates taken in the
order r, s, t, u, v as defined in Figure 1. So inputs 000, 001, 010/100, 011/101,
110 and 111 respectively generate the following six states s; (0 < ¢ < 5) with
probabilities p;:

so = 00000 po = q°
s1 = 00010 p1 = pqg?
sy = 01010 ps = 2pq®
s3 = 01101 ps = 2p%q
sq = 10001 Py = p3q
ss = 10011 ps = p°

The 3-bit counter will always be in one of these six states. However, the above
probabilities are for the state of the adder after the input of data for which 1 has
probability p. Previous and future states may be determined by different values
of p derived from other data.
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To obtain the number of gates changed, the current 5-bit state vector has
to be XORred with the previous state vector, and the bits counted in the result.
For a given new state s}, this is averaged over all immediately preceding states
sj to obtain the average number g; of gates changed for a given input. All cases
are computed in the same way: g; = Z;zo HW(s;®s;)p; is the average number
of gates changed given that state s} is the final state and the p; are the initial
probabilities for the states s;.

One of these, go, is calculated here for illustration. The reader is invited to
check the others if he so wishes. Input 010/100 creates state 01010 and so causes
2,1, 0, 3, 4 and 3 gate changes respectively from the six possibilities for the pre-
ceding state. The average number of gate changes for input 010/100 is therefore
2xq% + 1xpg® +0x2pg? + 3x2p%q + 4xp?q + 3xp® = 2¢3+pq®+10p>q+3p>. The
numbers for all states are, in order,

go = 5Spg®+8pPq+3p?
g = ¢C+2pg*+11p°q+2p’
92 = 2¢°+pg*+10p°q+3p’
g3 = 3¢°+10pg>+3p3q+4p®
g1 = 2¢°+1lpg*+6p>q+p?
g5 = 3¢*+8pg*+9p’q

In the case of p = q¢ = % when Os and 1s are equally likely, this gives 2,
2, 2, 2.5, 2.5 and 2.5 gates respectively for the six states. The first three of
these represent inputs with Hamming weights of 0 or 1 and therefore there is no
change in Hamming weight from input to output. The last three represent the
inputs with Hamming weights of 2 or 3 and therefore there is a change of 1 in
the Hamming weight from input to output. Hence the number of gates switched
does indicate a reduction in Hamming weight by the counter.

iii) Suppose now that the full adder has been initialised with data for which
1 occurs with probability p and that data is supplied for which 1 occurs with
probability p'. Define quantities p} for p’ analogously to the p; above. In general,
the average number of gate changes when there is no reduction in 1 bits from

input to output is then (E?:o P395)/ (E?:o p)) =

(5pq*+8p%q+3p*) ¢ +(¢° +2pg* +11p?q+2p®)p' ¢* +2(2¢° +pg* +10p*q+3p° )p' ¢'?
ql3 + 3plql2

(5pg*+8p*q+3p*)q’ + (5¢° +4pg®+31p*q+8p®)p'
ql + 3pl
/
(¢—p)*(5¢—p)

p
ql+3pl
which simplifies to the expression given in the statement of the theorem. Sim-
ilarly, the average number of gate changes when there is a reduction in 1 bits

from input to output is (2523 p;-gj)/(Z?:3 ;)

= p(5¢+3p)(qg+p) +

(8¢°+31pg®+12p*q+9p°)¢' +(3¢> +8pg®+9p>¢)p/
3q' +p'




C. D. Walter, Data Dependent Power Use 15

!

= (3¢+8pg*+9p’q) + (¢—3p)* (p—0q)

q
3q'+p'
iv) These two expressions have been written as a sum of two terms, one
of which is independent of p’ and the other of which has factors such as p—gq
and a denominator which make it relatively small. Thus, these two expressions
have only small dependency on the value of p’ except for values close to 0 or
1. By taking p’ = ¢’ = %, a quite reasonable approximation is obtained for the
two functions at most points. For this choice of p’, the difference between the
expressions for § = 0 and § = 1 is quite close to being linear in p, taking the
values 1.5 gates for p = 0, 0.5 gates for p = 0.5 and —0.5 gates for p = 1. As
is easily verified from graphing software (Figure 9), the greatest discrepancies
occur for p and p’ both large or both small. Such software demonstrates the
claims in (iv).
Using the binary cut method, it is straight-forward to locate the point at
which the difference between the two functions is zero. This turns out to be at
approximately p = 0.6 for all values of p'. O

We will be interested mainly in cases with 0.25 < p,p’ < 0.5 for which
the gate difference is clearly positive. Specifically, the initial AND gates in a
multiplier, which provide bit products to a tree of full adders, generate bits with
average only i and this average increases towards % further down the tree. Thus,
when data flows through the tree of full adders in a multiplier, its distinguishing
characteristics tend to disappear:

Lemma 1. i) For inputs which are independent and equal to 1 with probability
p, a bit from an unspecified output of a 3-bit counter is 1 with average probability
p3+%pq where ¢ = 1—p.

i) Take any initial value for p and assume the output bits from 3-bit counters
are independent. If bits are repeatedly fed randomly from one row to another in
a tree of 3-bit counters, then the probability of an output bit from the final row
being 1 tends monotonically towards % as the number of rows is increased.

Proof. i) The previous proof contained the probabilities p; of each final state
s;. (These are entirely independent of the previous state of the counter.) The
probabilities of a 1 on each of the output lines v and v are then p;+p>+ps
and ps3+ps+ps respectively, i.e. p>+3pg® and p®+3p?q. Because it is unknown
whether the bit comes from u or v, these are averaged with equal weighting here
to give p*+32p%q + 3pg®. The expression is then simplified using p+¢ = 1.

ii) For p in the interval [0,1], p < p’+3pg < p*+3(1-p)-1 >0 <
(1-p)(3—p) >0 <= p< $.Sop < p*+3pqfor p < i and p > p*+3pq for p >
1. Similarly, p’+3pg < &+ <= p*+3p(1-p)—% <0 <= (p—-)((p-31)*+3) <
0 < p< 3 Sop’+3pg < % forp < iandp’+3pg > 1L forp >3 Letp;
be the probability of an output 1 from the ith row of counters and let pg = p.
Then, using the assumptions, p;+1 = pi3+%piqi for ¢; = 1—p; and i > 0. The
inequalities establish that the sequence p; (i = 0,1, 2,...) will be monotonic and,



16 submitted to IEEE Transactions on Computers

because such sequences increase from below % but decrease from above %, it
must have limit equal to 1. O

Table 8 shows how the average difference in the number g of gates switched
between the cases § = 0 and 6 = 1 decreases down a branch in the tree of full
adders when starting at p = %. The lemma provides the sequence of values for
p through applying part (i) repeatedly to obtain the probabilities for the data
supplied to successive full adders. For each counter, previous data is assumed
to have the same value of p as incoming data. The gate differences are then
computed by taking p’ = p in part (iii) of the theorem.

j 0 1 2 3 4 6
p@ 0.2500 0.2969 0.3393 0.3753 0.4045 0.4275
g9 15417 1.3635 1.1950 1.0461 0.9218 0.8221

i 6 7 8 9 10 11
pl) 0.4453 0.4588 0.4690 0.4767 0.4825 0.4869
g 0.7442 0.6843 0.6388 0.6044 0.5784 0.5589

Fig. 8. Average Probability of a 1 and the extra Average Gate Switching when a Bit
is removed from jth counter in a sequence of 3-bit Adders.

These values clearly illustrate the diminution of data dependency as distance
from the inputs increases down the multiplier. For each sequence of three succes-
sive counters, the position dependent differences are approximately halved e.g.
from 1.5417-0.5 to 1.0461-0.5 (where 0.5 is the limiting value).

Although Theorem 1 can be used to perform direct numerical calculations
for the size of standard multipliers encountered in practice, the following ap-
proximations make some general trends easier to see as well as providing upper
and lower bounds for what happens:

Theorem 2. Suppose a tree of 3-bit full adders is constructed so that the outputs
from each row are fed randomly into the next row. Suppose also that the tree is
given random, independent input bits which are 1 with probability p. Then, for
a full adder at depth i+1 in the tree,

i) the probability of the input data bits being 1 is further away from L than
= (3)(3—p) always; but is nearer than § — (12)'(1—p) when |3—p| < g;

ii) the probability of the counter reducing the number of bits set to 1 is at least
%—%ai(l—Qp)+%a3"(1—2p)3 where o = % forp > %, and o = % for% <p<i
the probability is also bounded above by this expression with a = % when p < 35,
anda:% when%ﬁpg%;

iii) over a distance of one full adder in the tree, the difference between the
average gate switching activity for the adder and that for input with p = % drops

by approximately 25%.
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Proof. 1) We have already seen from Lemma 1 that data going into a gate with
probability p of being 1 will emerge with probability p3+%pq of being 1. It is
convenient to rewrite this in terms of 7 = %—p: input data which are 1 with
probability %—ﬂ yield output data which are 1 with probability %—%7‘(—7(3. So,
after i iterations corresponding to passing through ¢ full adders in succession, the
data are 1 with probability £—(2)ir—r f()(x?) for some polynomial f() which
has non-negative coefficients. Since the terms in 7 all have the same sign, deleting
any terms will result in a value closer to the constant term % In particular,
2—(2)ir is closer. Hence the first claim in (i) holds.

By choosing « such that %—%7(—7(3 is between %—mr and % and noting that
applying the function p — p3—|—%pq to each of these three values preserves their
relative order, the second claim of (i) can be satisfied. This requires £ > 342
Since || < 1, we choose k = 3+(3)%

ii) From Theorem 1(i), the probability of reducing the number of bits in a
gate whose inputs are 1 with probability pis p3+3p?q, i.e. 3p*>—2p>. Its derivative
6p(1—p) is non-negative over the whole interval [0, 1]. Hence, an under-estimate
for the value of p will lead to an under-estimate for the probability of a reduction
in the number of 1 bits, and similarly for over-estimates.

When p has the form £ — a’(1—p), the expression 3p?—2p® is equal to
1 3

1 -3a'(1-2p)+1a3(1—2p)*. Part (i) provides a lower bound by taking a = 2

for p > %, i.e. for negative m, and an upper bound by taking a = % for p < %, ie.
for positive 7. These roles are reversed by taking a = % instead in the region
1<p<i

iii) Theorem 1(iii) enables the gate switching activity to be computed. If the
expressions there are written in terms of m with p’ = p and the denominators
written as power series, then the gate switching activity is obtained as a power
series in 7 for which the constant is the gate switching activity at 7 =0, i.e. at
p= %, and the coefficient of 7 is non-zero. Over one full adder, the value of 7 is
reduced by a factor of approximately %. For smaller 7, this will be increasingly
close to the factor by which the power series, less the constant, is reduced. For
larger m, Table 8 shows that the other terms do not dominate the calculation,
as well as showing the accuracy of the result for small 7. O

Remark 5.1 Another valuable insight into gate switching activity is provided
by graphing the difference between the functions given in Theorem 1 (iii). This is
done in Figure 9. Except for extreme values, the dependence on p’ is minimal; the
greatest dependence is on p. Thus, when the number of bits set to 1 is reduced,
the number of gates switched in a counter will depend mostly on the previous
data, not the current data. The power variation due to the current data will
therefore reside mostly in the number of counters whose bit count is reduced.
Conversely, although the multiplier may demonstrate a power variation due
to the arguments it is currently using, it might also have a useful and interesting
data dependent variation as a result of the inputs to the immediately previous
multiplication which initialised it. Specifically, we should also consider the av-
erage gate switching activity during a random multiplication which takes place
immediately after the multiplier is initialised by a product axb where a is now
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P (initial data)
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Fig. 9. Average Difference in Gate Switching when the 3-bit Counter removes a Bit,
given as a Function of Initial and Following Data.

fixed and b fixed or random. To study this, the roles of the current and previous
products just need to be interchanged. This was done in all appropriate simula-
tions. However, identical results to those in Section 3 were obtained: obviously,
the gates switched in going from a computation of axb to a computation of
a'xb" are exactly the ones which are switched in going from a’xb' back to axb —
the gates are simply switched in the opposite direction. So identical results were
inevitable.

Of course, if we were to assume different power consumption figures for
switching gates from high to low than vice versa then power would vary be-
tween the two cases according to the difference between the number of gates
switching in each direction. This line of investigation is not pursued any further
here, but it may provide an attacker with additional opportunities to extract
useful data.

6 The Multiplier Model

We will assume a simple implementation for hardware multipliers which has no
special requirements such as pipelining or shortened critical path. So, in order
for the multiplier to compute axb, bits from the two arguments are first ANDed
together to create k binary integers which are the product of the multiplicand
b by a multiplier bit a;. This requires some initial multiplexors to generate k
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copies of each input bit. The k? bit products are then sent to a number of rows
of 3-bit counters which add together bits representing the same power of 2. Each
row takes a set of bits which, in effect, represents three binary integers and
transforms it into a set of bits which represents two binary integers. After at
most k—2 rows of counters, the initial £ binary integers have been reduced to
just two bits for each power of 2. Since one of the outputs from each full adder is
a carry up, carry propagation is taken care of automatically, leaving just one or
two output bits from each digit slice. If two such bits are generated, a 2-bit “half
adder” is used to reduce this to a single bit plus a carry, yielding the required
2k-bit output of the multiplier.

The horizontal view of the multiplier just presented is useful for structuring
purposes. A vertical view enables one to count the components more easily.
The recognisable diamond shape of a multiplier comes from aligning the i+1
or 2k—(i+1) initial bit products which are coefficients of 2¢. They form a bit
slice which performs all the computations associated with 2¢. Each bit slice has
inputs from the AND gates, generates one output result bit, but also receives
carries from the previous bit slice and sends carries up to the next bit slice.

For bit slice 0, there are no gates after the AND gate. For the ith bit slice,
with 0 < i < k, the initial +1 AND gates form products from pairs of input bits.
There are a further ¢—1 inputs to the bit slice which are the carry bits from bit
slice i—1. These bits are added together using (i—1) 3-bit counters and a single
2-bit counter which together generate ¢ carries which are output to the i+1st
bit slice. Each 3-bit counter reduces the number of bits by 1, so all the counters
reduce the total number of bits being processed by the slice from 2i to i+1. As ¢
of these are carries up, a single output bit remains, which is part of the answer.

At the slice for 2F there are only k—1 inputs from the AND gates and k—1
carries in from the previous slice. So these are added by (k—2) 3-bit counters and
a 2-bit counter which generate k—1 carries up to the next slice and one output
bit.

Then, for bit slices 2k—i where 0 < i < k, an initial i—1 AND gates form
products from pairs of input bits. There are a further 7 inputs to the bit slice
which are the carry bits from bit slice 2k—i—1. These bits are added together
using (i—1) 3-bit counters. This generates i—1 carries which are output to the
2k—i+1st bit slice, and a single output digit which is part of the result.

To minimise critical path lengths, as many bits as possible are added together
in each row of the adder tree. For a digit slice with ¢ inputs from the AND gates
there are ideally ¢/3 full adders in the first row. These generate i/3 carries up to
the next digit slice and /3 inputs to the next row of full adders. The previous
digit slice, with almost the same numbers of inputs and outputs, generates i/3
carries from its first row, and these provide a further i/3 inputs to the second
row. So there are 2i/3 inputs to 2i/9 full adders in the second row. The process
continues in the same way with 427 /3/+! adders in the jth row (j = 0,1,...) of
that bit slice. Of course, minor adjustments need to be made to this because
there must be a whole number of adders at each level and also the number
of carries in or out does not quite match the number of inputs from the AND
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gates. However, the first row, which contains about one third of all the adders,
receives inputs only from the AND gates. Thereafter, on the whole, subsequent
rows receive inputs which are all from the immediately preceding row, half being
from the current slice and half being carries from the preceding slice.

7 An Unsuccessful Hamming Weight Multiplier

The multiplier simulation of Section 3 uses O(2%¢k?) time because of the 2*
choices for each of a, b, ¢ and d, and because each multiplication has time order
O(k?). This makes it infeasible to model 16-bit or larger multipliers. To investi-
gate behaviour in terms of Hamming weights, it is necessary to built a multiplier
which computes gate switching activity just from the Hamming weights of a, b,
¢ and d. This should have time complexity O(k®) so that any expected size for
a multiplier can be processed.

The first attempt at such a Hamming weight multiplier ignored the specific
construction details which placed an integral number of full adders in each row
within the adder tree of each bit slice. The following approximation was made
for simplicity:

— Non-Integrality Simplification: For i > 0 assume the ith row in the multiplier
contains exactly k22¢/3+1 full adders.

In addition, many arguments were made easier by assuming the pairwise
independence of the bits which are input to each full adder. That is, it was
helpful to assume:

— Indpendence Assumption: All inputs to a row of full adders are independent
with the same probability of being 1.

This is the key simplification that was made in order to overcome the combi-
natorial explosion that occurs when looking at larger, unstructured multipliers.
In practice the assumption is absurd because there are only 2k bits fed into the
multiplier but k2 bits which are generated from them and have to be processed by
the O(k?) full adders. Moreover, strong dependencies can persist because outputs
from the AND gates are usually fed to sets of full adders in groups which corre-
spond to the multiplicand times a multiplier bit, and such grouping continues
down the hardware circuit. However, whether or not this simplifying assumption
of independence is reasonable was determined by comparing the model which
uses it with the original digit simulation.

7.1 The AND Gates

As earlier in Theorem 1, let undashed characters such as p to denote probabilities
during the initialisation phase and dashed characters such as p' for probabilities
during the execution phase.

The multiplier is initialised by computing ¢xd and then executes axb during
which gate switching is counted. The probability of a bit of a being 1is tHW(a),
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and the probabilities for b, ¢ and d can be similarly expressed in terms of their
Hamming weights. Denote these probabilities for a, b, ¢ and d by p', ¢’, p and ¢,
respectively.

Each of the initial 2k input bits is first multiplexed to k¥ AND gates at the
top of the multiplier. Those corresponding to the first argument (¢ then a) are
changed from 0 to 1 with probability (1—p)p’ and from 1 to 0 with probability
p(1—p"). Thus, taking both arguments into account, the multiplexors introduce
a power variation proportional to p+p’—2pp'+q+q'—2qq’. As this is linear in p
and ¢, when averaged over all initial conditions (p = ¢ = %), the power variation
is constant. So we need not concern ourselves further with this.

On average, the AND gates at the top of the multiplier will be initialised with
their outputs set to 1 with probability pq. Then, when axb is computed the AND
gates output a 1 bit with probability p'q’. So (1—pgq)p'q’ is the probability that
an AND gate will be switched from 0 to 1 and pg(1—p'q’) is the probability that it
will be switched in the opposite direction. So it will be switched with probability
pg+p'q'—2pgp'q’. This must be multiplied by k? to obtain the expected number
of AND gates which will change state.

This is a very reliable component of the total variation in gate counts, un-
sullied by independence assumptions of unproven merit: without making any
use of such additional assumptions, exactly HW(a)HW(b) gates produce outputs
of 1, and each gate has exactly probability k—?HW(c)HW(d) of being set to 1
during initialisation. Hence the average count for these gates is precise. It is a
component which can be usefully separated out from calculations when trying
to understand the behaviour and effects of the 3-bit counters.

This reveals a substantial part of the Hamming weight dependency that we
expected. In fact, there are just k(k—2) 3-bit counters, at most HW(a)HW(b) of
them can reduce their bits totals, and, moreover, each reduction causes a data
dependent increase in the order of 1.2 gates! . This yields about 1.2HW(a)HW (b)
gate switches from the counters for an average initialisation where p = ¢ = %,
compared with +k%+1HW(a)uHW(b) from the AND gates. So, without the benefit
of the forthcoming analysis, we expect that the variation for AND gate switches
will normally account for about 0.5/(1.240.5), i.e. 30%, of the total data de-
pendent variation, which is indeed what we find.

7.2 Inclusion of the Rows of 3-bit Counters

We now combine the results from previous sections. Theorem 1 provides the
probabilities of each input being 1 at a given depth in the adder tree both after
initialisation by ¢xd and during the computation of axb. If we denote by p; the
initialisation probability of a 1 being fed into a counter at depth ¢, then py = pq
and pi+1 = p®—3p;®+3p; by Lemma 1. Similarly, if p} denotes the probability

! from Table 8 and Theorem 2(i), if pg = p'q’ = } then the average extra gate switching
per counter when the bit count is reduced is about 3 + (1.5417—3)x$ >~ (2)"(3)’
= %+§X1.0417 =~ 1.2 gates. This assumes no bit reduction causes only negligible

data dependent gate changes, as is the case.
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of a 1 in the next data being fed into a counter at depth ¢, then pj = p'¢’
and p;, | = p; —%pf Zpl Substituting p} in place of p in Theorem 1(i) gives
the probabilities p}; for a counter at depth ¢ reducing its number of bits set
to 1 by d, namely p}, = 1—3p;2—|—2p;3 and pi; = 3p;2—2p;3. The substitutions
of p; and p} for p and p' in part (iii) yields the average number g;s of gates
switched when the counter makes a reduction of § bits. If n; is the number of
3-bit counters in row ¢, then under the multiplier model of Section 6, the ith row
(1 =0,1,2...) of the counter tree has approximately n; = ?fﬁkQ counters and the
total number of gates switched in that row is n;(plygio+p}; gi1)- Throwing in the
earlier contribution of k2(pg+p'q'—2pgp'q’) from the AND gates, and ignoring
the negligible contribution from the small number of 2-bit counters, the total
number of gates switched is approximately

wpa V' d) = K patp'a =2pa'd)
+ 12 {52 e (1302420 ) (pi(5-201) + 1y (1200 (5-6p1) )}
+ B {22 g3 (301720 ) (B+2pitap®) (1-pi) + 375 (4pi—1)*(2pi-1) ) |

The average over all initial states is then given by

L pq p'q
(5) (5) m(2, 27

1
n(p'q’) = =

7.3 Evaluation of the Model

The value of n(p'q’) was computed in the case of £ = 8 and compared with
the results presented in Table 4. Because n(0) = 126.44 and n(1) = 169.46 are
substantially different from the values given in the table, it is clear that such
a model Hamming weight multiplier is inadequate. Although the contribution
from the k 2-bit adders has been omitted, that could only lead to at most 2k
more gates switching. It would not quite be sufficient to enable n(1) to reach the
true value of 193.14 and it would take n(1) further away from its true value of
77.30.

Several improvements might be made to this model. As remarked, including
the 2-bit adders does not help at least until other changes are adopted. However,
the two main simplifications used in this multiplier were identified at the start
of this section: a Non-Integrality Simplification and an Indpendence Assumption.
The first of these can be removed entirely by following a specific construction
for the multiplier, such as that used earlier for the digit-by-digit simulations.
Using this construction also enables a weaker assumption to be made about the
independence of inputs to the various counters. This led to a second model.

8 A Successful Hamming Weight Multiplier

The hope of a generic Hamming weight multiplier which would predict gate
switching accurately seems doomed from the attempt described in the previ-
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ous section. A much more accurate model certainly has to be built. Specifically,
the construction for a real multiplier must be used and a weaker independence
assumption. The key simplification needed for the new model below is the fol-
lowing:

— Indpendence Assumption for Counters: The inputs to each full adder and
each half adder are independent.

8.1 The Multiplier

In the revised model, we took the original digit-by-digit multiplier used for the
results in Section 3. Every Boolean output was replaced by a real number prob-
ability. For each pair of Hamming weights for the multiplier inputs the corre-
sponding probabilities were assigned to each input bit. Then the independence
assumption made it possible to obtain the probability of a 1 appearing at the
outputs from each AND gate, each full adder and each half adder. Moreover,
these probabilities also enable the average number of gate switchings to be com-
puted in each counter, and hence in the whole multiplier. After averaging over
all initial states, the gate counts in Figure 10 were obtained for k = 8.

o
=

aw(a)xaw(®)| 0 1 2 3 4 5 6 7 8

73.54 73.54 73.54 73.54 73.54 73.54 73.54 73.54 73.54
73.54 74.90 76.32 77.82 79.39 81.05 82.79 84.60 86.48
73.54 76.32 79.39 82.79 86.48 90.35 94.32 98.30 102.25
73.54 77.82 82.79 88.40 94.32 100.28 106.14 111.82 117.28
73.54 79.39 86.48 94.32 102.25 109.95 117.28 124.21 130.76
73.54 81.05 90.35 100.28 109.95 119.05 127.53 135.46 143.00
73.54 82.79 94.32 106.14 117.28 127.53 136.99 145.95 154.92
73.54 84.60 98.30 111.82 124.21 135.46 145.95 156.46 168.34
73.54 86.48 102.25 117.28 130.76 143.00 154.92 168.34 193.46

0~ O T WN O X

Fig.10. Gate Switching Activity for the 8-bit Hamming Weight Multiplier.

8.2 Evaluation

There is now a much better match with the correct values than with the previous
Hamming weight multiplier. The maximum relative error between Tables 4 and
10 is in the region of 7.5%. Moreover, for all small k the forms of the discrepancies
between the new values and the true values are similar. For example, model
values for (0,i) are consistently marginally smaller than true values by about
5%. It therefore seems reasonable to assume that extrapolating to large cases will
yield fairly accurate results and indeed, a standard correction could be applied
to remove most of the error.
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Back in Section 4 it was noted that there is a rather nice connection between
the Hamming weights of the inputs to a product and the Hamming weight of
the result. So a useful health check to perform on such a model is to construct a
table of output weights and compare it with the expected values, as illustrated
in Figure 7. Each output digit is now a vector of probabilities associated with
its member bits. The sum of these probabilities is the average Hamming weight
predicted by the model for the output. The table of these output weights was
created for various k up to k£ = 32 and the same overall features were found
between the surface it generates and that for the true values. Indeed, the corre-
spondence between the two was much closer than expected: the same steep sides
were found when one Hamming weight is small, the same large plateau region
occurs for the majority of values, and there is the usual extra rise just before the
value (k, k). The only main feature that was missing was the slight depression
near (k, k). However, a very much better approximation was obtained this way
than by using the theoretical means which led to Figure 6.

8.3 Extrapolated Results

It is now apparent that the Hamming weight model for the multiplier describes
an overall level of power consumption which is essentially the same for multipliers
of any size. Total gate switching for (0,0) and (k, k) is listed in Table 11. In all
cases where k& < 12 the model gives values for (0,0) which are almost exactly
95% of the correct values, and so we are able to predict what the true values are
for (0,0) when k > 12. For (k, k) the values for the model seem to increase at a
slightly faster rate than the actual values. Thus it would seem that above k = 8
the model will provide an upper bound on the actual values for (k, k).

k 4 5 6 7 8 12 16 24 32 48 64
Actual(0,0)| 13.81 24.47 38.71 56.46 77.30 194.8 353.5 822.8 1486 3395 6081
(0,0)| 13.13 23.24 36.70 53.66 73.54 186.9 353.1 842.0 1540 3563 6422
Actual(k, k)| 40.12 68.23 103.05 144.40 193.14 456.3 824.5 1887 3380 7662 13669
(k,k)| 39.57 67.65 102.65 144.40 193.46 458.6 834.7 1921 3453 7851 14030

Fig. 11. Maximum and Minimum Gate Switching Activity, namely that for Hamming
Weights (0,0) and (k, k). (Predicted Values in italics).

For Hamming weights, switching for (0, 0) always gives the minimal activity,
and that for (k, k) the maximal activity. In all cases of small k this coincided
with the minimum and maximum for digit-by-digit products (see the Appendix).
We assume therefore that the table also provides accurate predictions for the
maximum and minimum gate switching activity experienced during any multi-
plication performed by a multiplier built according to the specification given in
Section 6 when averaged over all possible initialisations. Of course, without such
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averaging over the initial state the extremes are greater: for example, performing
axb immediately after axb should result in no gates switching at all.

As the total number of gates in the model multiplier is quadratic in k, namely
6k?—8k, it seems worth trying to fit a quadratic curve to the values in Table
11. In particular, using these and a few more values, gate switching for (0,0)
is approximated by 1.52k2—1.99k—2.87 in the actual multiplier, compared with
1.58k2—3.45k+1.37 in the simplified Hamming weight model; whereas that for
(k, k) is approximated by 3.37k?—2.03k—5.79 in the actual multiplier, compared
with 3.46k?—3.01k—3.88 in the simplified Hamming weight model. These func-
tions fit within the bounds imposed by the hardware. Since they also provided
a very reasonable fit to all the ten (respectively 15) points used rather than
just three (a maximum of about 3% relative error in the worst case), they were
used to suggest the approximations for the true values which were too costly to
compute in Table 11. Thus, on average between about a quarter and just over a
half of the gates are switched during each multiplication.

9 Conclusion

It has been shown that the variation in power used by a multiplier is closely
related to the Hamming weights of the two arguments when averaged over all
possible initial states. This is a potential weak point which attackers of embedded
cryptosystems may try to exploit. A simplified model of a multiplier was con-
structed which accurately determines power usage for all Hamming weights in
polynomial time with respect to the number of bits in the inputs. This contrasts
markedly with the exponential time required to consider all input bit patterns
in a full simulation of the multiplier. The model relies on a key simplification,
namely that inputs to full adders can be assumed to be totally independent of
each other, although this cannot be the case in practice. However, this simpli-
cation was verified for all small cases, and, by avoiding combinatorial explosion,
it makes it possible to deduce properties of much larger multipliers than would
otherwise be the case.
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Appendix

Here are the digits ordered by increasing average gate counts for the multiplier a
and multiplicand b in a small k-bit multiplier for axb constructed in the manner
described in Section 6.

k=5:
Multiplicand Order:

01 2 4 81617 3 5 918 6 10 20 12 24
2521 7 19 11 13 26 28 22 14 29 27 23 15 30 31

Multiplier Order:

0 1 2 4 81617 3 9 5 18 6 20 10 12 24
2519 21 7 11 13 28 22 26 14 29 27 23 15 30 31

k =6:
Multiplicand Order:

01 2 8 4163233 917 33410 518 6
12 36 40 24 20 48 49 35 41 11 25 7 13 19 50 37
42 14 21 26 38 56 52 22 44 28 51 57 15 43 39 53
27 58 23 45 29 60 46 54 30 59 61 55 47 31 62 63

Multiplier Order:

01 4 2 816323317 3 9 5341836 6
20 12 10 24 48 40 49 35 7 37 19 25 41 21 13 11
50 52 38 42 14 22 44 26 28 56 51 57 39 53 45 15
23 29 43 27 58 60 54 46 30 59 61 55 47 31 62 63

k=T
Multiplicand Order:

0 2 1 416 8 32 64 65 17 18 66 33 34 3 9
10 20 6 5 68 12 36 24 72 80 96 40 48 67 97 19
98 35 81 25 82 21 73 49 69 7 22 70 50 26 13 11
14 37 74 41100 38 84 42 28 76 52 44104112 88 56
99113 83 23 51114 71 15 27105 8 89101102 29 39
75 77 57106 53 8 30 78 90 43 45116 58 46 54 108
92120 60115121117 31103 87107 91 93 79 59109 55

122118 47 61110 94124 62123119 125111 95 63 126 127

Multiplier Order:

0 4 1 2 32 16 8 64 33 65 17 34 36 66 9 68

5 3 18 20 6 12 10 48 40 24 72 96 80 97 35 67
49 37 69 81 73 41 19 98 7 25100 21 11 50 13 70
38 52 82 84 42 26 14 22 28 44 74 76112104 56 88
113 99101 51 71105 39 83 85 89 57102 53 43 15114
75 27 77116 45 29 23106108 60 78 58 92 54 86 46
90 30120 115103117121107109 93 79 91 59 87 47 31
95 61118124 122110 94 62119125123 111 95 63 126 127
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